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Assessing historical rate changes in global tsunami occurrence
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S U M M A R Y
The global catalogue of tsunami events is examined to determine if transient variations in
tsunami rates are consistent with a Poisson process commonly assumed for tsunami hazard
assessments. The primary data analyzed are tsunamis with maximum sizes >1 m. The record
of these tsunamis appears to be complete since approximately 1890. A secondary data set
of tsunamis >0.1 m is also analyzed that appears to be complete since approximately 1960.
Various kernel density estimates used to determine the rate distribution with time indicate a
prominent rate change in global tsunamis during the mid-1990s. Less prominent rate changes
occur in the early- and mid-20th century. To determine whether these rate fluctuations are
anomalous, the distribution of annual event numbers for the tsunami catalogue is compared
to Poisson and negative binomial distributions, the latter of which includes the effects of
temporal clustering. Compared to a Poisson distribution, the negative binomial distribution
model provides a consistent fit to tsunami event numbers for the >1 m data set, but the
Poisson null hypothesis cannot be falsified for the shorter duration >0.1 m data set. Temporal
clustering of tsunami sources is also indicated by the distribution of interevent times for both
data sets. Tsunami event clusters consist only of two to four events, in contrast to protracted
sequences of earthquakes that make up foreshock–main shock–aftershock sequences. From
past studies of seismicity, it is likely that there is a physical triggering mechanism responsible
for events within the tsunami source ‘mini-clusters’. In conclusion, prominent transient rate
increases in the occurrence of global tsunamis appear to be caused by temporal grouping of
geographically distinct mini-clusters, in addition to the random preferential location of global
M >7 earthquakes along offshore fault zones.

Key words: Probability distributions; Tsunamis; Earthquake interaction, forecasting and
prediction; Statistical seismology.

1 I N T RO D U C T I O N

The assessment of tsunami hazards, like many other hazards, as-
sumes that the rate of occurrence is constant with time. A Poisson
process is often the default model for these assessments (e.g. Geist
& Parsons 2006; González et al. 2009) and with it, there can be tran-
sient, apparent variations in the historical occurrence rate caused by
events randomly occurring close in time. It is important to exam-
ine the historical data to determine if indeed a Poisson process can
explain the occurrence of tsunamis or whether interevent triggering
can elevate the occurrence rate over a period of time.

Triggering among tsunami sources implies that the occurrence
of one event is dependent on another, and therefore is not con-
sistent with a Poisson process. For earthquakes, the most com-
mon example of triggering is the occurrence of foreshock–main
shock–aftershock sequences. Whereas spontaneous earthquakes are
thought to be independent and follow a Poisson processes, the addi-
tion of foreshock–main shock–aftershock sequences to the historical
record causes the distribution of event numbers to deviate from a

Poisson distribution and result in higher than expected, transient rate
changes. Because earthquakes cause the vast majority of tsunamis,
either directly or indirectly through seismically triggered landslides
beneath the ocean, we would expect the statistics of tsunamis to
be similar to that of earthquakes. However, only earthquakes under
certain conditions generate observable tsunamis: if the magnitude
is large enough, if the earthquakes (or triggered landslides) are be-
neath the ocean and if the earthquakes are not very deep. These
conditions select a subset of all possible earthquakes and it is worth
investigating whether the same statistical models of seismicity apply
to tsunamis under these conditions.

There have been some notable recent examples of triggering
between tsunamigenic earthquakes. It is generally agreed that the
Mw = 8.3 2006 November 16 interplate thrust earthquake along
the Kuril subduction zone triggered the Mw = 8.1 2007 January
13 outer-rise, normal faulting earthquake approximately 105 km
away (Ammon et al. 2008; Lay et al. 2009; Raeesi & Atakan 2009;
Ogata & Toda 2010). Both of these earthquakes generated signifi-
cant tsunamis in the near and far field (Fujii & Satake 2008; Horrillo
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et al. 2008; Kowalik et al. 2008; Dengler et al. 2009; MacInnes et al.
2009). It is believed that the static Coulomb failure stress increased
on the outer-rise fault following the 2006 interplate thrust event,
consistent with previous hypotheses that the rupture cycle of in-
terplate thrust and outer-rise earthquakes is linked (Christensen &
Ruff, 1988; Dmowska et al. 1988). Whereas the two Kuril earth-
quakes were almost 2 months apart, the interevent time between
outer-rise and interplate thrust earthquakes can be very short, as in
the case of the 2009 September 29 Samoa earthquake. Originally
considered as one event, Lay et al. (2010) indicate that this was a
complex sequence of events, starting with a Mw = 8.1 outer trench-
slope normal faulting earthquake followed by a compound Mw =
8.0 interplate thrust earthquake 2 min later. In addition to triggering
of tsunamigenic earthquakes that occur on different faults, trig-
gering among earthquakes on the same fault can occur, such as on
different segments of the interplate thrust (e.g. Dmowska & Lovison
1992; Lin & Stein 2004). Throughout the tsunami catalogue, one
can identify short sequences of tsunami sources in which individual
events in the sequence are likely dependent among one another.

The phenomenon of interevent triggering has been studied exten-
sively in relation to interpreting seismicity. Fundamental laws such
as the Gutenberg–Richter (G–R) relation for earthquake sizes and
the Omori law for aftershock sequences appear to have global ap-
plicability. Statistical branching models, such as the epidemic-type
aftershock sequence (ETAS; Ogata 1988; Ogata & Zhuang 2006)
and critical branching models (Kagan & Knopoff 1987; Marzocchi
& Lombardi 2008; Kagan & Jackson 2011), are often effective in
replicating observed earthquake sequences and are consistent with
the G–R and Omori relations. More generally, the distribution of in-
terevent times and earthquake numbers as evidenced by global and
regional catalogues exhibit non-Poissonian statistics. Kagan (2010)
demonstrates that triggered earthquakes contributing to spatial and
temporal event clusters are best fit by a negative binomial distri-
bution for large time and space windows and a large magnitude
range. Earthquake numbers within individual earthquake clusters
follow a geometric distribution. If a restricted magnitude range is se-
lected, then earthquake numbers, including clusters, can be approxi-
mated by a Poisson distribution. Using these observations, Kagan &
Jackson (2000, 2011) develop both long-term and short-term fore-
casts.

We investigate whether triggered events appear in global tsunami
occurrence statistics, in terms of the distribution of annual event
numbers and interevent times. After a description of the data, in
terms of its level of completeness and historical trends, we note
anomalous apparent rate changes in historical time. To assess these
rate changes further, we test whether a stationary Poisson process or
a temporal and spatial clustering process adequately models tsunami
occurrence data. If the latter, then there may be some limited short-
term forecast potential that can be explored in future studies. This
may help elucidate concerns regarding the future occurrence of
tsunamis following major events such as the Mw = 9.0 2011 March
Tohoku tsunami.

2 DATA S E L E C T I O N

The data used for this study is extracted from the National Geo-
physical Data Center (NGDC) tsunami database (http://www.ngdc.
noaa.gov/hazard/tsu.shtml last accessed, 2010 November 5). Other
tsunami databases aside from the NGDC database exist for the type
of analysis presented here (Gusiakov 2001; Gusiakov 2009) and
should produce similar results over the period where the tsunami

catalogue is complete. The tsunami event database is a compilation
of separate catalogues of tsunami events, tide-gauge reports and in-
dividual event reports. Each event is linked to available water-level
readings (tide-gauge amplitudes, run-up heights, etc. above the tidal
height at the time of the tsunami). An advantage of tsunami cata-
logues is that direct measurements of wave height or amplitude are
recorded and are not dependent on a particular scale conversion,
as is the case with earthquake magnitude. The primary observation
systems for tsunamis are global tide-gauge networks as described
by Mofjeld (2009) and Dunbar et al. (2009). In addition, tsunami
catalogues include eyewitness observations and post-event tsunami
surveys. Although there may be some regions of the world in which
a tsunami of decimetre scale may not be detected, the long-term rate
of instrumentally observable tsunamis greater than 0.1 m has been
fairly stable since the mid-20th century, relative to current tsunami
observation systems. Completeness of historic tsunami records is
aided by the fact that tsunami event detection is primed or condi-
tioned by the occurrence of an earthquake. That is, efforts at event
detection are intensified when a major earthquake occurs beneath
the ocean or near the coast. For significant tsunamis >1 m, the long-
term rate as determined from different types of data (tide-gauge
recording, physical marks, eyewitness observations, etc.) is fairly
stable since the beginning of the 20th century. We quantitatively
estimate periods of completeness for the two tsunami data sets (>1
and >0.1 m) later.

The data selection objective for this study is to retain those events
that are reliably identified as tsunamis. Events in the NGDC database
have an integer validity mark ranging between −1 and 4, with 3
being defined as a probable tsunami and 4 as definite tsunami.
Validity values of −1, 0, 1 and 2 are labelled as erroneous, seiche
or inland disturbance, very doubtful and questionable, respectively.
Data that are initially selected range in time from 1800 January
1–2010 January 10, and have validity marks of 3 or 4. Maximum
water levels for each event are displayed in Fig. 1 to determine
catalogue completeness and whether the recording threshold has
changed over the last two centuries. The relative abundance of 0.1 m
values is interpreted as being a default reading, likely an indicator
that a tsunami was distinguished on the tide-gauge recording from
its frequency characteristics or rapid onset in comparison to ambient
noise (e.g. wind waves), but a maximum-amplitude determination
could not be made. In the latter part of the 20th century continuing
to the present, maximum-amplitude values less than 0.1 m are more
common, because of an improvement in tide-gauge technology.

To determine when the global reporting rate stabilizes, we search
for change points in the cumulative number distribution. In this
case, successive linear regressions of the cumulative distribution
are computed starting with the first event and sequentially increas-
ing the left cut-off year in the regression with each event until the
coefficient of determination (R2) reaches a maximum. This simple
analysis suggests that the long-term rate of tsunami observations
>1 m stabilizes at approximately 1890 (2.3 events yr–1). For the
lower threshold amplitude, the change-point analysis is applied to
maximum tsunami amplitudes between 0.1 and 1.0 m. This indicates
that long-term rate stabilizes for maximum amplitudes >0.1 m in
the late 1950s (7.9 events yr–1) and applying it to the 0.1–1.0 m
range is a more conservative estimate of completeness compared
to the change-point analysis applied to all data >0.1 m. Starting
with the occurrence of the Pacific basin-wide 1946 April 1 Aleutian
tsunami, there was a gradual increase in tide-gauge stations report-
ing tsunami events throughout the world. That event resulted in a
more systematic reporting of small tsunamis and the establishment
of the first Pacific tsunami warning centre. Similar completeness
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Figure 1. Maximum amplitude (m) on a logarithmic scale of tsunami events from the beginning of the 19th century to 2010. Increased reporting during the
20th century is evident, particularly below the 1 m threshold.

estimates for the >1 and >0.1 m data are obtained by examining
the tsunami size distribution as a function of time, using the method
developed by Wiemer & Wyss (2000).

A cumulative plot of tsunami events displays interesting transient
rate changes lasting several years or more after the long-term rate
has stabilized (Fig. 2). Fig. 2(a) is the cumulative number of events
for the entire catalogue; Dunbar et al. (2010) provides historical
trends for the complete tsunami catalogue since the beginning of
the 18th century. Figs 2(b) and (c) are for portions of the tsunami
catalogue that are thought to be complete: >1 m for the time period
1890–2010 and >0.1 m for 1960–2010, respectively. A prominent
rate increase occurs in the mid-1990s for the >1 and >0.1 m data
that is the original motivation for this study. Rate change patterns
detected by kernel density estimates for the data shown in Figs 2
(b) and (c) are further discussed in the next section.

The data selection criterion used to determine tsunami interevent
times is that tsunami sources are recorded with at least hourly pre-
cision. Interevent times are plotted in Fig. 3 for the selected data
(1800–2010). Tsunami interevent times are for the most part station-
ary over the 20th century as the observation systems for tsunamis
stabilize. The lack of interevent times longer than several hundred
days during this time period is consistent with their much reduced
probability of occurrence under an interevent distribution model
in the exponential family, as discussed in Section 5. There is an
apparent decrease in the minimum threshold of interevent times
that relates to the ability to distinguish a succeeding event within
the coda of the antecedent event. The advent of real-time com-
munications, digital technology and shorter sampling intervals at
tide-gauge stations during the latter part of the 20th century (cf.,
Mofjeld 2009) may have resulted in improved identification of sep-
arate tsunami events. The NGDC database does not seem to contain
events measured at deep-ocean pressure sensors that have no coastal
water-level measurements. An example would be a small-amplitude
tsunami from an aftershock that is not separately distinguished at
a tide-gauge station from the larger tsunami associated with the
main shock. Missed tsunami event pairs or sequences with short
interevent times are likely rare in the database.

3 K E R N E L D E N S I T Y E S T I M AT E S

Using the data in Section 2, we first examine patterns of histor-
ical rate changes using non-parametric methods. Kernel density

estimates are used to better delineate the fluctuations that are ob-
served in the cumulative plot (Fig. 2). Compared to traditional
histograms, kernel density estimates avoid origin and disconti-
nuity problems, while imposing a degree of smoothing on the
data. In the statistical analysis of seismicity, event catalogues are
declustered to determine the background rate of spontaneous earth-
quake occurrence (i.e. in the absence of dependent foreshock–main
shock–aftershock sequences; e.g. Console et al. 2003; Marzocchi
& Lombardi 2008). Using a declustered catalogue, different sta-
tistical tests have been developed (e.g. Matthews & Reasenberg
1988) to determine whether or not variations of the spontaneous
rate are caused by the intrinsic randomness of occurrence (e.g. that
of a Poisson process), or whether there are real variations in the
spontaneous rates caused by changes in long-term fault movement
(Ogata & Abe 1991) or an external triggering event (e.g. Selva &
Marzocchi 2005; Wang et al. 2010). In this early stage of statistical
analysis of tsunami occurrence, we examine the raw catalogue with-
out declustering the data to determine whether or not aftershock and
triggered events have similar effects in rate changes as they do for
earthquake occurrence.

In addition to statistical tests of spontaneous rate changes,
Matthews & Reasenberg (1988) indicated that it is helpful to have
other visual tools such as kernel density estimates to evaluate his-
torical changes in seismicity. In general, kernel density estimates
provide a non-parametric regression of the data using a particular
kernel function K. The estimate f̂ (x) is defined as∫

f̂ (x) = 1

Nh

N∑
i=1

K

(
x − Xi

h

)
, (1)

where Xi are the observation values, N the number of observations
and h is the bandwidth for the kernel function (Silverman 1998).
The kernel function is often in the form of a probability density
function (usually unimodal and symmetric, such as the Gaussian
function) that satisfies the condition∫ ∞

−∞
K (x) dx = 1. (2)

The kernel can be thought of as a probability mass of size 1/N at
each data point (Wand & Jones 1995). There are numerous kernel
density functions commonly used, two of which we test later.

The value used for the bandwidth (h) controls the smoothing
of the kernel density estimate. Although the process of choosing
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Figure 2. Cumulative number of tsunami events: (a) all tsunami events 1800–2010; (b) events with maximum amplitude >1 m from 1890 to 2010; (c) events
with maximum amplitude >0.1 m from 1960 to 2010.

the optimal bandwidth is somewhat subjective, guidance is pro-
vided based on minimization of the mean integrated square error
(MISE)

MISE( f̂ ) = E

∫ {
f̂ (x ; h) − f (x)

}2
dx . (3)

In reference to the standard normal density distribution,
Silverman (1998) indicates that the optimal bandwidth is

hopt = 0.9A

N 1/5
, where A = min

(√
variancex,

interquartile rangex

1.349

)
.

(4)
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Figure 3. Interevent time (days) on a logarithmic scale of all tsunami events from the beginning of the 19th century to 2010.

Although this value of the bandwidth may oversmooth the density
estimates in some cases (Wand & Jones 1995), results presented here
using this value appear to be consistent with fluctuations observed
in the cumulative plot (Fig. 2). hopt values for the two subcatalogues
are 10.1 yr for the >1 m data and 4.4 yr for the >0.1 m data.

Density estimates of the historical tsunami data are shown in
Fig. 4, using two different kernel functions: the biweight and
Epanechnikov kernels. The biweight kernel function is given by

K (z) =
⎧⎨
⎩

15

16
(1 − z2)2 |z| < 1

0 |z| ≥ 1
, (5)

whereas the Epanechnikov kernel function is

K (z) =
⎧⎨
⎩

3

4
(1 − z2) |z| < 1

0 |z| ≥ 1
. (6)

Several features of the kernel density estimate appear robust. For
the >1 m data (Figs 4a and b), a prominent rate increase occurs
in the 1990s as also suggested by the cumulative event plots in
Fig. 2. The kernel density estimate for the >1 m data also suggests
two other periods with slightly higher occurrence: one in the 1930s
and one from the late 1960s to the early 1970s. Because of the
smaller bandwidth, the density estimate for the >0.1 m data more
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Figure 4. Kernel density estimates of historical tsunami occurrence. Events >1 m from 1890 to 2010: (a) biweight kernel; (b) Epanechnikov kernel. Events
>0.1 m from 1960 to 2010: (c) biweight kernel; (d) Epanechnikov kernel.
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Figure 5. Kernel density estimates of historical tsunami occurrence using the variable gamma kernel of Chen (2000) (red curve) compared to the biweight
kernel shown in Fig. 4 (blue curve). (a) Events >1 m from 1890 to 2010; (b) Events >0.1 m from 1960 to 2010.

finely resolves the rate increase in the 1990s, as well as indicating
an apparent rate increase starting in the mid-2000s (Figs 4c and
d). In each case, the high number of tsunamis that occurred in the
mid-1990s is the most anomalous in the last century.

Because of the finite bandwidth of the kernel density functions,
there are edge effects at the beginning and end of the catalogue.
Smoothing at the beginning and end of the historical catalogue
causes an artificial decrease in the density estimates. Boundary ker-
nels have been proposed to fix this problem (Wand & Jones 1995).
In particular, Chen (2000) developed non-negative kernels based on
the gamma distribution, but with a variable shape parameter:

K x
b +1,b(z) = z

x
b e

−z
b

b
x
b +1�

(
x
b + 1

) , (7)

where � is the gamma function and b is a scale parameter. One
property of this kernel is that the shape and amount of smoothing
vary depending on proximity to the beginning and end of the data.
Overall, the kernel density estimate using the variable gamma distri-
bution (Fig. 5, red curve) is less smooth, but again indicates that the
mid-1990s rate increase is prominent. This analysis suggests that
the onset of this rate increase is more abrupt than the conventional
density estimate. The gamma kernel estimate can also be used to
determine whether or not the rate increase in the mid-2000s is wan-
ing. For the >1 m data, the rate of occurrence appears to be reduced
to the background level prior of the first half of the 20th century by
2010. For the >0.1 m data, it appears that the rate increase is contin-
uing to the present day. However, we cannot rule out the possibility

that reporting of small tsunamis has increased since the occurrence
of the 2004 Indian Ocean tsunami, thus generating an artificial rate
increase relative to pre-2004 levels.

Seismicity patterns indicate that the number of events within a
cluster increases sharply soon after a triggering event and decays
according to a geometric distribution (Kagan 2010). This observa-
tion motivated us to try a one-sided exponential kernel. Because
the shape of the exponential kernel is constant and is a special case
of the gamma distribution, this would also help evaluate the effects
of the variable-shape gamma kernel described above. In this case
(Fig. 6), the density estimate is rougher still, but the basic struc-
ture of tsunami event occurrence is similar to that shown in Fig. 5.
Whether or not all of these rate increases are consistent with that of
a stationary Poisson process is the subject of the next section.

4 D I S T R I B U T I O N O F T S U NA M I
E V E N T N U M B E R S

Several previous earthquake studies demonstrate that rate changes
can be traced to specific triggering events (e.g. Marsan & Nalbant
2005). For the tsunami rate changes described in the previous sec-
tion, however, dominant triggering events are not as obvious. In this
section, we test whether the rate changes can be ascribed to random
fluctuations of tsunami event numbers associated with a station-
ary Poisson process. We also compared the distribution of event
numbers with a negative binomial distribution associated with
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Figure 6. Kernel density estimates of historical tsunami occurrence using a one-sided exponential kernel (red curve) compared to the biweight kernel shown
in Fig. 4 (blue curve). (a) Events >1 m from 1890 to 2010; (b) Events >0.1 m from 1960 to 2010.
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Figure 7. Annual number of global tsunamis: (a) >1 m 1890–2010 data set; (b) >0.1 m 1960–2010 data set.

temporal clustering, assuming a large enough magnitude range and
extensive time and space windows as indicated by Kagan (2010).

The Poisson distribution is a discrete distribution that describes
the probability that a number of events (k) can occur in an interval
of time given by the following mass distribution:

f (k) = λke−λ

k!
, (8)

where λ is the rate or intensity parameter. The mean (μ) and variance
(σ 2) of the Poisson distribution both equal λ. However, a plot of the
yearly tsunami event numbers shown in Fig. 7 suggest that the

observed number distribution is slightly overdispersed compared to
the Poisson distribution (i.e. σ 2 > μ).

A goodness-of-fit test that can be performed relative to the as-
sumption of a Poisson distribution and maximum-likelihood param-
eter estimation is Pearson’s chi-square test (e.g. Rice 2007)

X 2 =
∑

i

(Oi − Ei )2

Ei
, (9)

where Oi and Ei are the observed and expected distribution values,
respectively. For this and subsequent statistical tests, a significance
level of p = 0.05 (i.e. a 95 per cent confidence level) is chosen from

Published 2011. This article is a U.S. Government work and is in the public domain in the USA, GJI

Geophysical Journal International C© 2011 RAS



8 E. L. Geist and T. Parsons

the outset. For the >1 m data set, this test yields a chi-square value
of 150.6 with 119 degrees of freedom and an associated p value of
0.027 (H0: Poisson distribution with λmle = 2.3 events yr–1). For
the >0.1 m data set, the chi-square test yields a chi-square value of
57.9 with 50 degrees of freedom and an associated p value of 0.21
(H0: Poisson distribution with λmle = 7.9 events yr–1). Therefore,
whereas it is likely that the global tsunami event numbers >0.1 m
since 1960 follow a Poisson distribution, the larger catalogue of
significant tsunamis >1 m since 1890 do not appear to follow a
Poisson distribution at the 95 per cent confidence level.

An alternative to the Poisson distribution for overdispersed event
numbers is the negative binomial distribution. In general, the nega-
tive binomial distribution can be thought of in several ways, for ex-
ample as representing a Poisson cluster process, a process in which
the Poisson rate parameter λ follows a gamma distribution, etc.
(Rice 2007). Specifically for earthquakes, Kagan (2010) indicates
that the negative binomial distribution is an appropriate model for
event catalogues that contain clusters if large space and time win-
dows are used and if the magnitude range of the events is large.
Kagan (2010) also suggests that the negative binomial distribution
is a result of more general branching models of earthquake occur-
rence that reproduce the G–R relation and Omori’s law (e.g. Ogata
1988; Ogata & Zhuang 2006). As a consequence, the parameters of
the negative binomial distribution for event numbers can be directly
related to the parameters of the earthquake size distribution (Kagan
& Jackson 2000; Kagan 2010).

Kagan (2010) provides a description of the different forms of
the negative binomial distribution as well as parameter estimation
methods as applied to earthquake event numbers (see also Kagan &
Jackson 2000). The form used here is

f (k) =
(

n + k − 1

n − 1

)
pn(1 − p)k, (10)

where the distribution parameters satisfy n > 0 and 0 ≤ p ≤ 1. The
definition of the overdispersion parameter used here is α = 1/n Two
parameter estimation methods are described by Kagan (2010): the
moment method and the maximum-likelihood estimate (MLE). For
the former,

p̂ = m1

m2
and n̂ = m2

1

m2 − m1
, (11)

where m1 and m2 are the mean and variance of the observed event
distribution. The moment method and the MLE yield similar pa-
rameter estimates for the tsunami data (Table 1).

A likelihood-ratio test is made for the null hypothesis that the
overdispersion parameter of the negative binomial distribution is
zero (α = 0, equivalent to a Poisson distribution). This version of
the likelihood-ratio test accounts for α = 0 being on the boundary
of the parameter space (Gutierrez et al. 2001). The p value for the
>1 m data set is 0.04, whereas the p value for the >0.1 m data set is
0.27. Consistent with the results of the chi-square test for the Poisson
distribution, this test again indicates that the Poisson model can be
rejected for the >1 m data set (1890–2010) in favour of negative
binomial model, but the extra distribution parameter associated
with the negative binomial distribution is not necessary to explain

Table 1. Estimated parameters for the negative binomial distri-
bution of tsunami event counts.

Data set Moment method MLE method

>1 m 1890–2010 p̂ = 0.79; n̂ = 8.7 p̂ = 0.79; n̂ = 9.5
>0.1 m 1960–2010 p̂ = 0.86; n̂ = 49 p̂ = 0.86; n̂ = 63

the >0.1 m data set (1960–2010; i.e. Poisson null hypothesis cannot
be rejected).

The different models can also be evaluated with respect to the
Akaike information criterion (AIC). The standard form of AIC is
given by

AIC = −2 log L + 2k, (12)

where log L is the log likelihood for a particular model and k is the
number of model or distribution parameters. For the >1 m data set,
the negative binomial distribution has the lower AIC value, indi-
cating that it is the preferred model. The difference in AIC values,
however, is small (�AIC = 1.1) and is not statistically significant at
the 95 per cent level (see the Appendix). For the >0.1 m data set,
the Poisson distribution yields the lower AIC value (�AIC = 1.6).

5 I N T E R E V E N T D I S T R I B U T I O N

The temporal occurrence of tsunami events can be viewed from
a different perspective: the distribution of interevent times. In a
previous study, Geist & Parsons (2008) examined the empirical
density distribution of interevent times for the entire global cata-
logue (up to the year 2007). The conclusion from that study was that
there were more short interevent times than expected from an ex-
ponential distribution associated with a stationary Poisson process.
Several statistical models are consistent with the data, including
the generalized gamma distribution (Corral 2004b) and a theoreti-
cal distribution derived from the ETAS model (Saichev & Sornette
2007).

The global interevent distribution is revisited in this study, using
the >1 and >0.1 m data sets. Selecting data with at least hourly
precision limits the events to seismogenic tsunamis or tsunami with
a seismically triggered landslide component. Interevent times have
a much larger range than annual event numbers. As such, care must
be taken when binning the data. Corral (2004a) proposed a proce-
dure where interevent times are binned according to an exponential
function cn n = 1, 2, 3, . . ., where the binning parameter c is con-
sistent with the range of the data. The bin counts are divided by the
width of each bin and by the total number of interevent times to
yield the empirical density distribution shown in Fig. 8 (circles).

Also shown in Fig. 8 are the best-fit exponential model given by
the density distribution

p(τ ) = λ exp(−λτ ), (13)

where λ is the rate parameter and the gamma model given by the
density distribution

p(x) = xγ−1
exp

(
− x

β

)
�(γ )βγ

, (14)

where x = λτ . The rate parameter for the exponential distribution
is determined by the mean rate for the entire data set, whereas
the shape (γ ) and scale (β) parameters for the gamma distribution
are determined using the MLE method. The best-fit parameters for
the >1 m data set are 1/ β = 166 d and γ = 0.74, whereas for the
>0.1 m data set 1/ β = 45 d and γ = 0.70. Maximum log-likelihood
contours along with the 95 per cent confidence estimates for the
gamma distribution parameters are shown in Fig. 9. For each data
set, the 95 per cent confidence interval for the shape parameter γ is
less than one, indicating temporal clustering either from aftershock
sequences or longer-term correlations (Corral 2004a; Hainzl et al.
2006).

Published 2011. This article is a U.S. Government work and is in the public domain in the USA, GJI

Geophysical Journal International C© 2011 RAS



Historical rate changes in tsunami occurrence 9

Figure 8. Density distribution of tsunami interevent times. Circles: empirical distribution. Magenta line: exponential distribution. Blue line: gamma distribution.
(a) >1 m 1890–2010 data set; (b) >0.1 m 1960–2010 data set.

Figure 9. Maximum-likelihood contours and 95 per cent confidence intervals for gamma distribution parameters: (a) >1 m 1890–2010 subcatalogue;
(b) >0.1 m 1960–2010 subcatalogue.

Using the maximum log likelihood for both the >1 and >0.1 m
data sets, the AIC is significantly smaller for the gamma model com-
pared to the exponential model, suggesting a better goodness-of-fit
(Ogata & Zhuang 2006). In addition, the difference in AIC values
between the models is statistically significant for each data set (see
the Appendix). Thus, as previously indicated by Geist & Parsons
(2008) using several other interevent distribution models, there are
more short interevent times than expected from the exponential
distribution for both data sets.

For the >0.1 m data set, this appears to be in conflict with the
results of the previous section in which a Poisson distribution can-
not be rejected for the distribution of event numbers. This may be
explained by the larger range of observed interevent times com-
pared to annual event numbers, and the fact that most interevent
times occur near the mean interevent time, where there is little dif-
ference between the exponential and gamma distributions. Another,
perhaps more plausible, explanation is that because the character-
istic timescale of clustering is much less than 1 yr and because
clusters are infrequent, the effects of clustering would be filtered or
smoothed out in the annual count data described in Section 4.

The interevent distribution shown in Fig. 8 can be used to iden-
tify anomalous temporal and spatial clusters of events. Examination
of the short-term rate changes in the 1990s (>1 m data) indicates
several pairs of events with short interevent times in the range
that deviate from the exponential distribution (Fig. 8a): for exam-
ple, two earthquakes along the Java subduction zone 1.1 d apart
in 1994, two along the Ryukyu subduction zone 0.67 d apart in
1995 and two along the Kamchatka subduction zone 8.7 d apart
in 1997. However, there does not appear to be classical aftershock
sequences (i.e. several events or more) in the tsunami catalogue.
Clusters are temporally identified as having interevent times that
are in the range that deviates from an exponential distribution: less
than 10 d for the >1 m subcatalogue and less than 1 d for the >0.1 m
subcatalogue (Fig. 8, comparing binned data with magenta curve).
An additional criterion to define clusters is that the events are in
the same geographic region as specified in the NGDC database.
Clusters identified in this manner typically consist of only two to
three events for the >1 m subcatalogue and two to four events
for the >0.1 m subcatalogue. We therefore term them as ‘mini-
clusters’ to distinguish them from earthquake event clusters and
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Figure 10. Historic distribution of mini-clusters (arrows) of events plotted on the bilinear kernel density estimate from Fig. 4. Labels indicate location and
number of events for each mini-cluster. (a) >1 m 1890–2010 subcatalogue; (b) >0.1 m 1960–2010 subcatalogue.

foreshock–main shock–aftershock sequences that consist of many
more events. Interevent triggering most likely occurs for longer
durations than considered for the simple, but restrictive, criterion
described above (i.e. 10 and 1 d maximum limits). For example, Par-
sons (2002) indicates that for large (M ≥ 7) earthquakes worldwide,
there is an Omori-law decay that lasts between ∼7 and 11 yr after
a main shock. However, cluster-identification methods for tsunami-
genic events for this duration have yet to be developed and tested
and therefore are currently beyond the scope of this paper.

To determine the relationship between mini-clusters and historic
rate changes in tsunami occurrence, we plot in Fig. 10 the timing of
the mini-clusters on the bilinear kernel density estimate shown in
Fig. 4. Each arrow in Fig. 10 represents a mini-cluster. Several mini-
clusters of events occur close in time during the 1990s rate increase.
It should be noted, however, that most mini-clusters that occur close
in time are geographically distant from one another, both in the
1990s rate increase (Figs 10 a and b) and in the 1960–1970s rate
increase (Fig. 10a) and therefore do not have an apparent physical-
triggering mechanism.

6 H I S T O R I C A L C H A N G E S I N
P RO P O RT I O N O F T S U NA M I G E N I C
E A RT H Q UA K E S

We examine the effects of historical changes in the proportion of
earthquakes that generate observable tsunamis to determine whether
it is related to the temporal clustering of tsunami events described
in the previous section. Tsunami sources can be considered as a
subset of all earthquakes that meet certain criteria: (1) a minimum
magnitude threshold (approximately M = 6.5–7); (2) primarily dip-
slip mechanism and (3) shallow enough focal depth to cause sig-
nificant seafloor displacement. Under these criteria, the statistics of
tsunamigenic earthquakes might share similar characteristics to that
for the entire global earthquake catalogue. There is even a greater
chance that tsunamigenic earthquakes share similar statistical char-
acteristics with shallow subduction-zone earthquakes indentified in
Bird & Kagan (2004) and Kagan et al. (2010). In the latter study,
subduction-zone earthquakes do not appear anomalous in terms of
their clustering parameters in comparison to the global catalogue.
Complications with the statistics of tsunamigenic events in gen-
eral, however, arise with those events that are not generated by
earthquakes or are triggered by earthquakes indirectly. This would

include non-seismically triggered landslides, landslides triggered
by small magnitude earthquakes and volcanogenic processes.

Shown in Fig. 11(a) is the annual count of earthquakes (M ≥
7) and tsunamis (≥1 m) from 1940 to 2010. The centennial earth-
quake catalogue (Engdahl et al. 1998; Engdahl & Villaseñor 2002)
was used to determine the earthquake annual counts from 1900 to
2001. From 2002 to 2010, the Advanced National Seismic System
catalogue was used (http://www.ncedc.org/anss/). The proportion
of earthquakes that generated tsunamis is very roughly constant
during this time period (Fig. 11b; mean = 0.16), although certain
years such as 1994 are clearly anomalous. In Fig. 11(c), the global
distribution of both earthquakes (right) and tsunamis (left) are com-
pared for the years of 1994 (anomalous) and 1995 (red circles). The
great majority of M ≥ 7 earthquakes in 1994 were along oceanic
subduction zones, whereas in the following year, M ≥ 7 earth-
quakes are distributed among oceanic and continental fault zones.
Other tsunamigenic factors such as focal depth and mechanism do
not appear to have been anomalous in 1994. It is possible, there-
fore, that the random geographic distribution of global earthquakes
contributes to local rate changes in tsunami events, in addition to
temporal grouping of tsunami source clusters.

7 D I S C U S S I O N

This study demonstrates that tsunami numbers (resulting in >1 m
run-up) and interevent times (both >1 and >0.1 m) deviate from that
expected for a Poisson process, suggesting that interevent triggering
has an effect on tsunami source occurrence. Parsons (2002) indicates
that for large earthquakes (M s ≥ 7), triggered earthquakes occurred
at rates higher than the background rates in regions of increased
shear stress up to 240 km away from and ∼7–10 yr after the main
shock. The most likely mechanism for triggering large earthquakes
of tsunamigenic magnitude is the static stress change after a previous
earthquake, rather than dynamic stress changes resulting from the
passage of seismic waves from an earthquake (Parsons & Velasco
2011). The distribution of earthquake event numbers investigated
by Kagan (2010) indicates that for large space and time windows
and for a large enough magnitude range, the negative binomial
distribution best describes the data. Such a distribution results from
clusters of events dependent on a triggering event that is contained
within the data. For the case of tsunamis, the clusters not only
include aftershocks, but landslides in regions destabilized from a
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Figure 11. (a) Annual number of global tsunamis (≥1 m) and earthquakes (M ≥ 7) from 1900 to 2010; (b) proportion of tsunamis (≥1 m) to earthquakes
(M ≥ 7); (c) geographic distribution of tsunamis and earthquakes 1940–2010 (yellow circles). Radius of circle is proportional to size. Red circles represent
events occurring in 1994 and 1995, as indicated.

previous event, that generate tsunamis from an earthquake with a
much smaller magnitude than the conventional magnitude threshold
for tsunamigenesis.

The prominent tsunami rate change in the mid-1990s (Fig. 4)
appears to have two primary causes. Temporal grouping of tsunami
mini-clusters, defined as having anomalously short interevent times
compared to an exponential distribution and being within close
geographic proximity to one another, occurs most notably in the
mid-1990s. Even though the groups of mini-clusters appear to be
independent, the fact that several of these mini-clusters occurred
close in time greatly contributed to an overall global rate increase.
In addition, in some years (e.g. 1994), the variable geographic occur-
rence of earthquakes is skewed toward oceanic fault zones, resulting
in a greater proportion of tsunamigenic earthquakes (Fig. 11).

With regard to the temporal grouping of mini-clusters, it is pos-
sible to view the tsunami occurrence data as a Poisson cluster pro-
cess. In the specific case of a Hawkes self-exciting process (Hawkes
1971), immigrant events are distributed according to a stationary
Poisson process and each immigrant generates a finite cluster ac-
cording to a fertility rate (Kagan & Knopoff 1987; Ogata 1998;
Bordenave & Torrisi 2007; Kagan & Jackson 2011). For tsunami
events, the fertility rate is much lower compared to analogous pro-
cesses in seismicity (Geist & Parsons 2008). Even with the restric-
tive definition of mini-clusters above, treating each mini-cluster as
being associated with a single immigrant, the event number statis-
tics are likely to be close to a Poisson distribution (cf ., Gardner &

Knopoff 1974). Confirmation of this, however, awaits application
of declustering methods to tsunami source data, although the re-
sults provided in this study suggest that the tsunami catalogue may
well be considered as a Poisson cluster process, with only the in-
frequent occurrence of mini-clusters. However, when mini-clusters
occasionally occur close in time as would generally be expected
from a Poisson process, the apparent rate of tsunami occurrence
can increase significantly.

8 C O N C LU S I O N S

The global occurrence of tsunamis deviates from a Poisson process
as evidenced by the distribution of event numbers for tsunami sizes
>1 m and from the interevent distribution of tsunami sources. Sim-
ilar to seismicity models, the negative binomial distribution appears
to best fit annual tsunami rates because there are periods with more
tsunamis than expected from a Poisson dispersed process (σ 2 = μ).
The most prominent period of high tsunami rates occurred in the
mid-1990s. Kernel density estimates of the historic tsunami cata-
logue indicate a robust and prominent increase in the number of
tsunamis during this time that are likely not related to increased
detection capability. Using gamma kernels, the onset of the 1990s
rate change appears to be abrupt. However, there does not appear to
be a protracted sequence of triggered events during this time period
as one may suspect from seismicity analogues. Rather, the cause of
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the mid-1990s rate increase is the apparently random grouping of
geographically distinct tsunami source ‘mini-clusters’, in addition
to a preferential location of earthquakes of tsunamigenic magni-
tude along offshore faults (e.g. in 1994). Further research into the
conditions in which mini-clusters may occur, such as triggering be-
tween interplate thrust and outer-rise fault systems, may lead to the
development of short-term tsunami forecasts.
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A P P E N D I X : S I G N I F I C A N C E
O F A I C D I F F E R E N C E S

In this appendix, we describe the technique used to establish whether
Akaike information criterion (AIC) values are significantly different
for nested distributions. A distribution is nested within a parent
distribution if the nested distribution can be obtained by ignoring
one of the parameters (e.g. setting equal to 0 or 1) of the parent
distribution. For example, the exponential distribution

p(τ ) = λ exp(−λτ ), (A1)

is nested within the gamma distribution

p(x) = xγ−1
exp

(
− x

β

)
�(γ )βγ

, (A2)

because eq. (A1) can be recovered by setting shape parameter (γ )
in the gamma distribution equal to one (λ = 1/β).

The likelihood-ratio statistic for nested distributions is given by

−2 log

[
L(θ̂ )

L(θ )

]
, (A3)

where L is the log likelihood and θ̂ and θ are the distribution pa-
rameters for the nested and parent distributions, respectively (Cahill
2003). The likelihood-ratio statistic is approximately distributed as
a χ 2 distribution with j degrees of freedom equal to the difference
in the number of distribution parameters between the parent and
nested distributions. Cahill et al. (2003) discusses the assumptions
and conditions in which the distribution given in eq. (A3) can be
approximated by the χ 2 distribution. The likelihood-ratio statistic
(eq. A3) is distinguished from the likelihood ratio hypothesis test.
The former is used here to determine whether differences among
AICs are significant.

Distribution eq. (A3) can be written in terms of the AIC for the
nested and parent distributions, that is,

AICi = −2 log(Li ) + 2i

AICi+ j = −2 log(Li+ j ) + 2(i + j). (A4)

Substituting into eq. (A3) one obtains (Cahill 2003; Burnham &
Anderson 2010)

AICi − AICi+ j + 2 j ∼ χ 2
j , (A5)

where the ∼ indicates that the left-hand side has the distribution
of the right-hand side. The two AICs are different at a significance
level α if the left-hand side of eq. (A5) is greater than χ 2

j (α). For
the exponential and gamma distributions used in this study, i = 1
and j = 1, such that

AIC1 − AIC2 + 2 ∼ χ 2
1 , (A6)

for a 95 per cent significance level, χ 2
1 (0.95) = 3.84.

AIC values for the exponential and gamma distributions are tested
to see if they are significantly different for the interevent time data
(Section 5). For the >1.0 m tsunami run-up data, the AIC for the
exponential distribution is 3498,whereas the AIC for the gamma
distribution is 3481. Using these values in eq. (A6), 19 > χ 2

1 (0.95)
indicating that the gamma distribution is the better model and that
the AIC are statistically different at the 95 per cent significance level.
For the >0.1 m data, the AIC for the exponential distribution is 3997,
whereas the AIC for the gamma distribution is 3958. Using these
values, 41 > χ 2

1 (0.95) also indicates that the gamma distribution is
the better model and that the AIC are statistically different at the
95 per cent significance level.

Inasmuch as the Poisson distribution can be considered nested
within the negative binomial distribution as the overdispersion pa-
rameter 1/n → 0 (cf., eq. 10), we can similarly evaluate the AICs
from the different models for the annual count data (Section 4).
For the >1.0 m data, the AIC for the Poisson distribution is 451.8,
whereas the AIC for the negative binomial distribution is 450.7.
Using these values, 3.1 < χ 2

1 (0.95) indicates that whereas the neg-
ative binomial model is the better model based solely on the AIC,
the AICs are not different at the 95 per cent significance level. For
the >0.1 m data, the Poisson model is the better model based on
comparison of AICs.
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